

Methodology to build Key Performance **Indicators (KPIs):** for industrial or occupational safety? How to build efficient KPIs?

C. Duval, Y. Dien, M. Voirin (EDF-R&D, France)

Table of contents

- Scope for KPIs (iNTEg Risk)
- Occupational safety or/and industrial safety?
 - Characterization
 - Indicators
- State of art on indicators
 - Their use to make diagnosis and prediction, indicators in the nuclear field
 - Efficient features for indicators (T, H, O)
 - Reference to AIEA conclusions
- Onclusion: Advantages and drawbacks of indicators

KPIs: proposal for scope

- KeyRelevant clue
- Performance
 - Operation and/or Process safety and/or Occupational safety
 - Our point of view: (Process) safety and not (only) operation
- Indicator
 - Making sense regarding SAFETY
 - A set of indicators or One global indicator ???

Indicators for Safety or for Availability ?

Performance: set of properties defining system functioning but not its safety (availability, efficiency, profitability, productivity, ...)

KPIs : Safety or Performance ???

Indicators are different ...

- o Easier to make an "availability" diagnosis rather than a safety "diagnosis"
- The day before a major accident some "performance indicators" could be "green" (e.g. BP refinery at Texas City)

● ... but could overlap

Organisational factors could have effects both on safety and performance

Occupational Safety or/and Industrial Safety?

- The iNTeg-Risk project => performance indicators
- Occupational Safety [Hopkins 2000, Baker Panel 2007] => individual safety
 - Refers to individuals
 - Accidents such as falls, trips, crushing, electrocution, vehicle accidents...
- Industrial Safety => process safety
 - Refers to the process, the different types of hazards, the incidents linked to the process
 - With potential damages to the plant (including employees) and to the environment
 - And possible generation of multiple fatalities or diseases
- Presence of an effective Personal SMS does not ensure systematically an effective Process SMS
 - Managing one does not mean managing the other one: e.g. Texas City

Lagging and Leading Indicators

• Reactive monitoring: use of lagging indicators

- Failures in use \Leftrightarrow Operational feedback
- Active monitoring: use of leading indicators
 - Measures of safety activity or failures revealed by safety activity <> NEW vision for Operational feedback

	Lead	Lag
Personal SMS		BP Texas City, Exxon Longford
Process SMS	Challenge for iNTEg Risk	DC 10 Ermenonville

Dimensional of Indicator Space

State of art on indicators

- 2 complementary aims:
 - For appraisal, overview
 - → picture of a function (technical, social, economical,...) = DIAGNOSIS
 - To allow forecast (sensible extrapolation)

→trend. evolution = PROGNOSIS

- \Rightarrow Use in numerous fields of activities : health, criminality, economics, social satisfaction, road security...
- Lessons to be learned:
 - Global indicators → large samples
 - 0
- - Indicators must be built according to an 'ad hoc' method in order to fulfill a 0 precise goal
 - Indicators are not « self understandable » 0
 - They need to be analyzed, interpreted 0

Lessons learned in the nuclear field

- An additional fundamental aim : to detect damages to safety and to in depth defense as soon as possible
- A shared knowledge data base for global indicators (AIEA, NRC, ...): Reactor Automatic Shutdowns; Number of Safety related Events; Fortuitous Unavailability Rate; Outages; Radiation protection (Dosimetry); ...

Moreover : indicators could be related to

- **O** A specific issue (e.g. life cycle management)
- **O** A Risk informed approach
- **O** The Organizational context

What about the past experiences in indicators?

- A trend to multiply indicators
- Interpretation difficulties
- Necessity to know the 'models' leading to safety degradation (causality data)
- Lessons do not seem to be learned from the past (towards use of indicators)
 - **O** Back and forth behavior
 - However, indicators are very useful, or even, mandatory

Efficient features for indicators (T,H,O) (1/3)

Example from Nichols and Marcus (University of Minnesota,1990) : « It is important to prevent accidents and radioactive release: So, it is intended that **indicators forecasting potential problems should be developed before they occur.** »

- Theoretical and methodological questions complement one another
 - o Data collection
 - o Treatment
 - o Analysis

Knowing that:

- The number of indicators increases => impact on data collection, treatment and analysis
- Uncertainties => uncertainty, bias or mistake on the conclusions
- Necessity to be objective

Efficient features for indicators (T,H,O) (2/3)

Scientific features

• Mandatory

- Validity (measure of the defined criterion)
- Accuracy, reliability (reproducibility)
- Robustness (stability in relation to inopportune or untimely changes)

• Trade-off dimension

- Simple in use
- Transparency
- Cost-effectiveness
- Sensibility (ability to detect **small** changes)
- Relevant balance between specific and generic
 - Two pitfalls to avoid:
 - To focus on indicator in forgetting the "real life"
 - To take account of the overall situation in forgetting specific changes "here and now"

Efficient features for indicators (T,H,O) (3/3)

Practical Features

- Simplicity and easiness of implementation and use
- Convenience for drafting results
- Allowing a reliable, sound and with no bias interpretation

Scientific and Practical features give implicit ways for building indicators

Reference to AEIA conclusions

- Necessity for a set of indicators ...
- ... that can not be used solely.
- Importance to reach an equilibrium between leading and lagging indicators
- Importance of the engineer judgment and calculation tools
- Assessment using quantitative indicators AND periodic qualitative analysis
- Opinions and approaches lead in the different countries are significantly different → Need for harmonization
- Need for indicators according to the public, the citizen
- Need to ensure that these indicators are transparent and understandable AND not submitted to manipulations

Conclusion: Advantages and drawbacks of indicators

Built using the previously defined features...

Indicators are:

- Way to make objective intuitions and observations
- Possibility to provide organizations with early warnings
- But « The map is not the field ». The indicator is only a tool.
- Though indicators seem to be useful, not to say essential as they give a global and "expurgated" picture of the situation
- One can always wonder if certain risks and malfunctioning could not be detected through this indicators mechanism
- Have to be completed with others tools: safety audit, organisational analysis...

