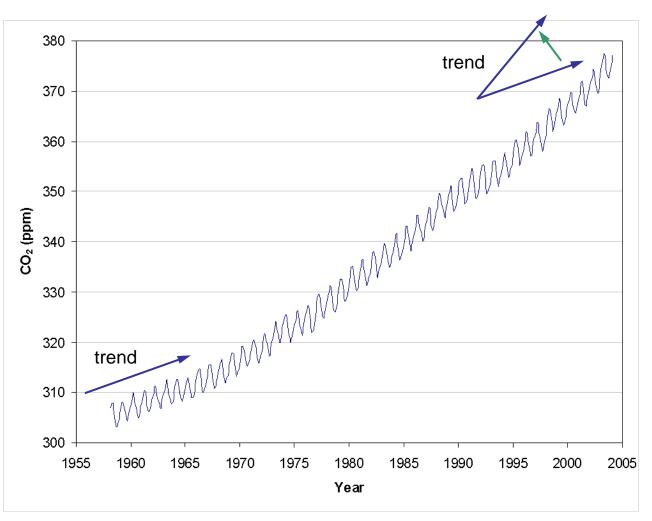
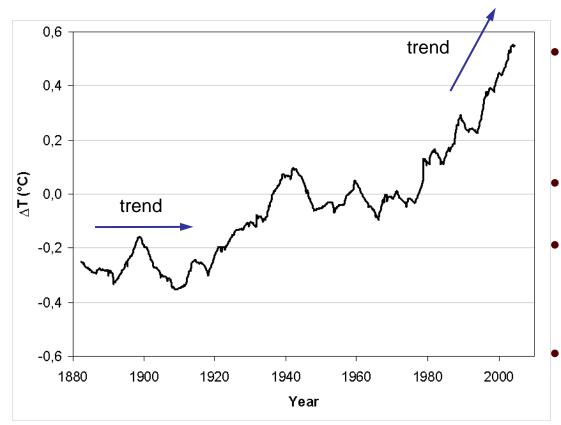


Emerging risks in alternative strategies of CO₂ capture and storage


P. Auerkari, S. Holmström, J. Salonen, A-M. Heikkilä VTT, Espoo, Finland

> D. Balos, A. Jovanovic R-Tech, Stuttgart, Germany

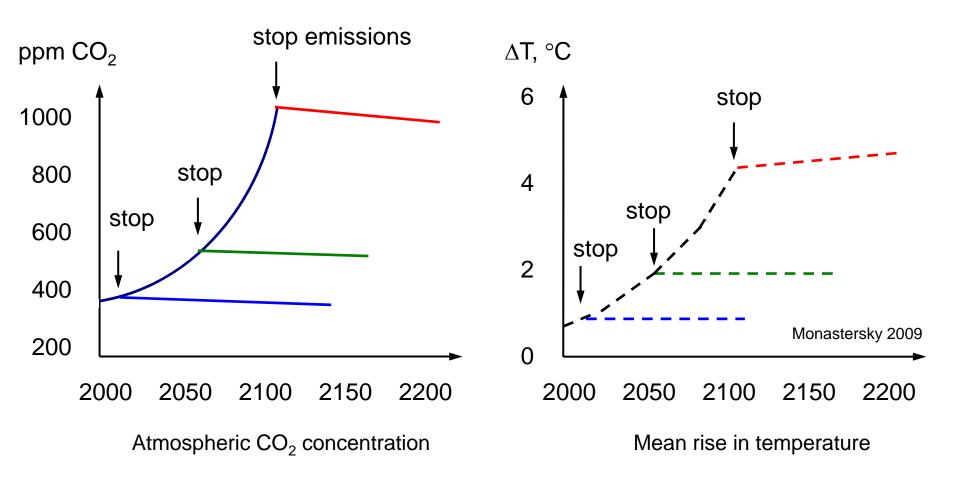
Introduction


Increase in atmospheric $CO_2 \Rightarrow$ climate change \Rightarrow countermeasures

- <u>Natural</u> sources and sinks + significant <u>human</u> emissions
- <u>Added impact</u> by other greenhouse emissions such as methane, HFC, soot, N₂O...
- Potential consequences: global warming 2-6°C, flooding of coastal regions, widespread droughts by the end of the century?

Problems - challenges

Mean change in world temperature

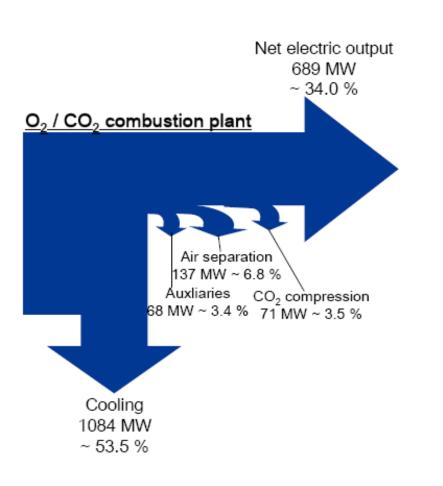

0 = mean of 1951-1980

- Accelerating global warming: - interaction of factors, e.g. warming by CO2 will release methane from permafrost and (finally) ocean floor
- Sensitivity in climate models \Rightarrow uncertainty
- Calibration by measured and factored consequences:
 - trends in measurements
 - historical & other evidence
- Efficiency of countermeasures? - cost, timing, impact

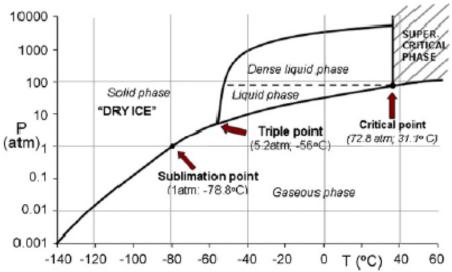
Suggested countermeasures: CO₂ capture & storage

Challenge: slow recovery from warming

Capture at source + deep underground storage


Intermediate storage & transport of CO₂, at additional risk/cost

- even a modest source (pp)
 ≥ million tonnes of CO₂ per year
- max ~100 000 ton / ship
- alternatively large network of pipelines > 1000 km min
- large intermediate storage sites



Capture at source + deep underground storage

CCS for coal firing:

- Pre- or post-combustion capture, e.g. with gasification (IGCC) or oxyfuel processes
- Oxyfuel plant for conversion to carbon dioxide (and water)
- Transport to final storage by pipeline/shipping

Capture at source + deep underground storage

 CO_2 geyser = leaking geological storage

Aeschbach-Hertig 2009

Emerging risk issues:

- Ineffective capture
- Incomplete or no mineralisation, poor sealing layers ⇒ leaking storage
- Threat to human life:
 - natural analogies in Cameroon, Europe
 - industrial leaks

June 2-3, 2009

Biological capture + storage as char

- pre-industrial CO₂ sources balanced by sinks
- nearly 500 Gt of CO₂ per year in atmospheric circulation on land
- bound to biomass, large potential (volume in nature)

Biological capture + storage as char

Capture by pyrolysis of biomass:

- CO₂-neutral to -reducing
- provides fuels for e.g. transport
- remnant carbon as char to improve agricultural soils (stable > 10³ yr)
- applicable on individual farmer level and in larger scale plants

Emerging risk issues:

- expansion by a diffuse process
- implementation to sufficient extent on time for significant impact
- application in conservative societies

Geological/mineral capture + storage

Natural peridotite: mainly olivine $(Mg,Fe)_2SiO_4 \& pyroxene (Ca,Mg,Fe)_2Si_2O_6$ Reaction with carbon dioxide to form solid carbonate/silicate products: e.g.

$$\begin{split} \mathsf{Mg}_2\mathsf{SiO}_4 + 2\mathsf{CO}_2 &= 2\mathsf{MgCO}_3 + \mathsf{SiO}_2 \\ \mathsf{Mg}_2\mathsf{SiO}_4 + \mathsf{CaMgSi}_2\mathsf{O}_6 + 2\mathsf{CO}_2 + 2\mathsf{H}_2\mathsf{O} &= \mathsf{Mg}_3\mathsf{Si}_2\mathsf{O}_5(\mathsf{OH})_4 + \mathsf{CaCO}_3 + \mathsf{MgCO}_3 \end{split}$$

Features:

- facilitates storage on surface, reduced transport distance
- carbon "permanently" bound
- larger mass to transport/storage than with gaseous/liquid CO₂

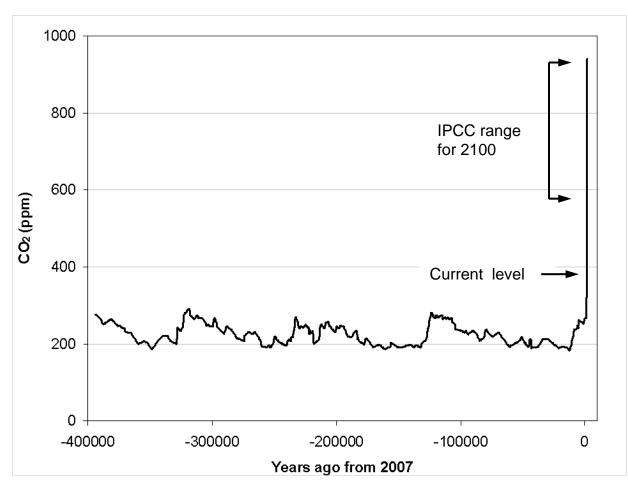
Risk issues:

- leaks at the site of capture (or in transport / reaction site)
- cost of surface storage (large landfills)
- high volume of transport (reagents & reaction products)

Other proposed approaches

Geoengineering:

- manipulation of Earth thermal balance (solar reflectors, feeding of ocean algal blooms, etc.)
- manipulation of precipitation: cloud seeding, forest planting etc.
- chemical trapping of CO₂ directly from the atmosphere

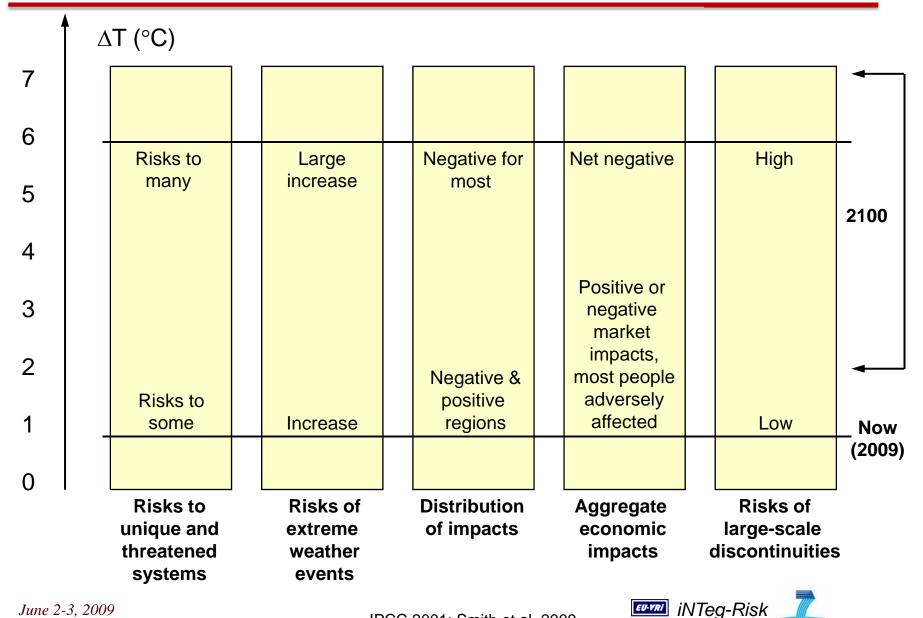

Risk issues:

- limited technology, slow to implement or unknown impact
- unequal distribution of benefits and cost
- political/societal acceptance in different countries/regions

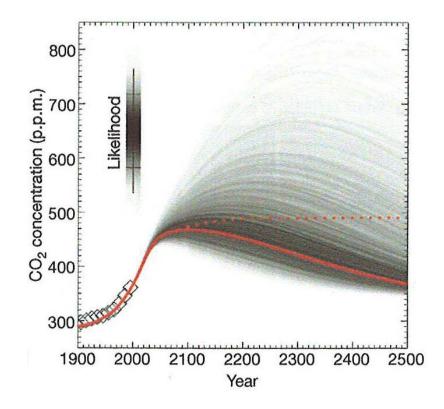
Status

Atmospheric CO₂ now higher than for millions of years

Advantages:


- warmer in Finland
- no new ice ages
 (before CO₂ ~ 250 ppm)

Disadvantages:


- lowland/coastal flooding
- deserts spreading
- loss of agricultural land
- high cost of intervention
- only slow recovery after mitigating action

Risk issues in climate change: current view

Risk issues in climate change: current view

- Assumed mitigation by 2020-2050 (?)
- Serious concern on regional agreement
- Difficulties to accept global vs. regional benefits and cost
- Difficulties to accept the time lag between mitigating action and its measurable impact

Allen et al. 2009

Summary: emerging risk in CCS

• Capture at source + deep underground storage:

- carbon permanently stored in appropriate sediments (if not leaking); but
- no mature technology or large scale implementation before 2020-2030
- risks in storage and transport due to unprecedented scale

• Biological capture + storage (char):

- inherently safe for thousands of years, added benefit in soil management
- distributed (local) effort, probably slow to implement globally

• Geological/mineral capture + storage:

- only surface depository needed, carbon ~permanently stored
- even larger scale mass transport than as CO_2

• General aspects:

- any widely distributed (local) mitigation process can be slow to implement
- unequal regional benefits of mitigation
- \Rightarrow slow or reduced response, multiple methods necessary
- urgent action needed if "safe" level of $CO_2 \sim 350-450$ ppm

