

Emerging risks due to extreme storage of hazardous materials

Pablo Lerena Institute of Safety and Security SWISSI

Ulrich Krause BAM Federal Institute for Materials Research and Testing

> Presenting the iNTeg-Risk project 1st iNTeg-Risk conference June 2-3, 2009, Stuttgart

T1.3.2: B2: Emerging risks related to advanced storage technologies for hazardous materials

basic description:

- What are the new challenges in storage processes?
- What are the emerging risks?
- What are the risk assessment procedures now?
- What will be new in risk assessment and safety solutions?

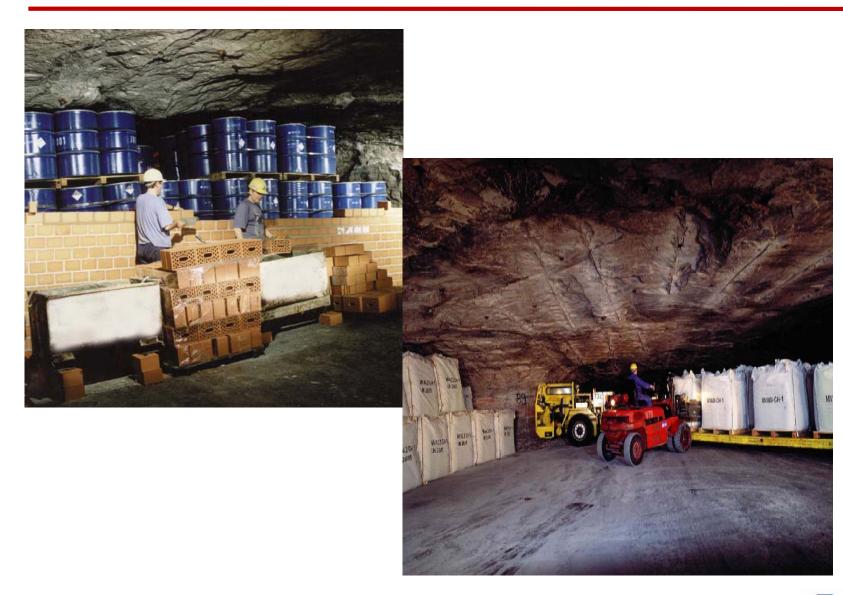
➢ Distributed storage of "new" energy carriers (H₂, LNG)

- ≻Storage of large masses of CO₂
- >New storage technologies for fossile fuels (e.g. > 10^5 t of coal)
- >Underground storage of potentially chemically active materials
- >Underground storage of radioactive materials

Above-ground storage of chemically active wastes and recycling materials

New storage technologies for fossile fuels

above-ground silo coal storage at a power plant (2 x 50.000 t) (from www.eurosilo.com)



underground coal storage at a power plant (from www.eurosilo.com)

Underground storage of potentially chemically active materials

Emerging risks consideration: technical issues

➤Failure of equipment for storage, shipping or conveying liquid and pressurized H2,

>What is the "acceptable" maximum size for storage containers for H2?

>Large coal storage: autoignition of densely packed coal, insufficient preventive methods or effective fire

➢ prevention that renders coal storage unusable (such as clogging to prevent transport).

Interaction of long-term thermal and chemical stability of wastes with rock layer mechanical stability,

>Hazards of unintentional CO_2 release from containers for intermediate storage and transportation (will be addressed by Pertti Auerkari et. al.)

>Methodologies for lessons-learning from accidents, evacuation

management respecting human behaviour in deep and complex underground infrastructures

➤Large underground coal storage: HSE risk to personnel and emissions; in addition, the risk of lost district

➤heating capacity that can be critical under mid-winter cold spells (clogged transport is enough to disrupt coal feed),

▶.....

➤Acceptance of hydrogen applications (problem of oxyhydrogen),

➢Risk mitigation of fires, explosions and toxic gases in the surrounding of large storage facilities by constructional, organisational and communicational means

> the identification and evaluation of emerging risks for large-scale storage of liquid H_2 ,

> the identification and evaluation of emerging risks of large-scale storage of CO_2 (will be addressed by Pertti Auerkari et. al.),

> the application of new mathematical models for physical and chemical processes in the deposits,

>development of a new quick test for thermal stability of waste,

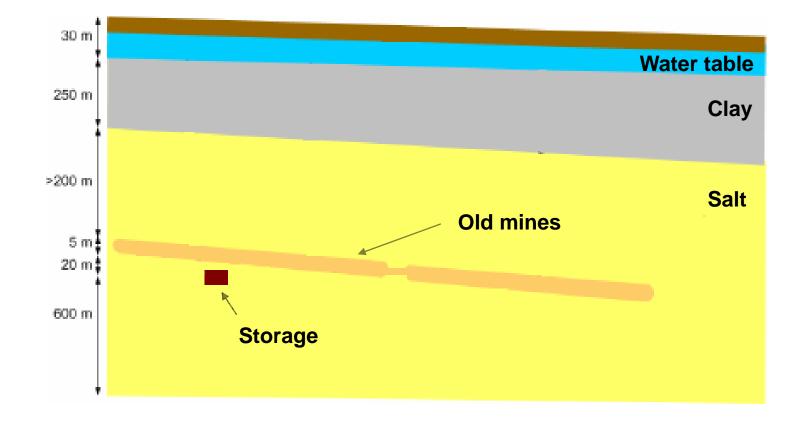
>development of a classification system of waste according to hazard indicators,

➤application of QRA,

>application of technical barriers to dense coal ignition,

Example: Unexpected reactions of wastes in underground storage facilities

- Based on
 - "Stocamine" rapport d'expertise pour la Commission Locale d'Information et surveillance (C.L.I.S) du centre de Stockage de Déchets Ultimes Stocamine à Wittelsheim (France) (2003)
 - Alain Cantineau
 - Alain Kiennemann
 - Pablo Lerena
 - Alain Lugnier



Outline

- Description of the incident
- Hypothesis of the origin of the fire
- Consequences of the incident
- Lessons learnt

Stocamine: underground storage of waste

Source of the picture: BMG Engineering, Schlieren- Zürich

Picture from a similar storage (Nerfa- Neurode in Germany)

Source of the picture: BMG Engineering, Schlieren-Zürich

Fire

- September 10th, 2002
 - Fumes and smell
- Aeration of the sector is reduced, fire fighting with water
 - Fumes are reduced but not eliminated
 - CO, CO₂, SO₂... monitoring:
 - Despite two attempts of reducing oxygen still signs of combustion

Fire

- Final attempt on extinguishing the fire
 - Infrared detection of the hot spots
 - Extinction with water
- November 17th, 2002
 - The fire is extinguished

Origin of the fire (hypothesis)

- At the beginning of September:
 - Storage of "big-bags": asbestos- containing residues of a fire
 - Foul odour, liquid drain
- Self-heating of these products
 - Self-sustained combustion also in reduced oxygen atmosphere
 - Presence of oxidizing substances (fertilizers)

Consequences of the fire

- Exposure of the operators
 - Operators tried first to extinguish the fire without protection
 - As the stored products were supposed not being combustible, no procedure was in place to intervene in case of a fire producing toxic fumes
 - Contamination with dioxin of some galleries
 - Potential exposure during future work in the storage

Consequences of the fire

- The activity of the storage was stopped
- The sector were the fire occurred was closed
- What to do with the 44000 t of waste present in the mine?
 - Stay forever (closing the shafts)
 - Pollution in 500, 1000 years?
 - Take them out
 - High occupational risks (asbestos)

Lessons learnt

- The risks related to the thermal instability and combustibility were known but forgotten
 - The fact that asbestos-containing waste may contain combustible or self-heating materials went unnoticed
 - Testing for content of asbestos-containing waste is difficult
- Improved preventive procedures to avoid storing combustible and self-heating materials
- Define emergency procedures to intervene if however a fire occurs

Thanks for your attention !

