

Use of modern risk-appraisal and modeling tools in nanotechnology applications (EU Project MUST)

Use of modern modeling techniques in MUST D. Balos, Steinbeis R-Tech, Germany N. Filipovic, Harvard School of Public Health, US

The starting point ...

Can Nanomaterials be Toxic? ... YES!

- Wide range of materials can be made "nano"
- Nanometer range is where life processes happen e.g. inhaled ultrafine particles are toxic to lung and cardiovascular system
- Transported easily, go unexpected places
- Accumulate in cellular organelles
- Some components are toxic as chemicals, i.e. they can be toxic both as chemical and nano!
- Many (most?) of possible effects belong to the category of "low-doses-long-term-exposure" which is an unsolved problem in itself, also for "non-nano" materials!
- ... Huge knowledge gap: Currently we have "a nano part" of knowledge needed to assess the toxicity of nanomaterials! ... probably just about 10-9 of knowledge we have about the toxicity of chemicals! ... think about REACH!

Aluminum nanoparticles inside an endosome of an A549 cell from an in vitro toxicity experiment (cf. ToxSci 2006)

Short-term and long-term adverse effects: disorders/diseases

The starting point ...

- What do we have ("good news")?
 - public and scientific interest
 - Overall methodology/approach (e.g. the IRGC)
 - Running research (US, EU, ...)
 - Some methods and tools
- What we still miss (for sure!)
 - clinical research
 - targeted epidemiological research/surveys
 - integration of research: analytical, in silico, in vitro, in vivo ...
 - integration of nano-issues into the routine practice of public health ... regulatory framework missing!

Aluminum nanoparticles inside an endosome of an A549 cell from an in vitro toxicity experiment (cf. ToxSci 2006)

Short-term and long-term adverse effects: disorders/diseases

Public health and medical issues related to nanomaterials

- Few or no information about the specific risks of a technology and substances already used in consumer products.
- Risks due to toxicity, fire, explosion, etc. to the workers handling nanomaterials and nano technology
- Risk to the environment and public due to exposure of airborne particles from nano technology and nano materials

- Lack of specific regulations or legislations for NT. This raises the general problems of liability for the industry
- Societal acceptance not sure (at least on the long run)

SOLUTION:

IRGC RISK GOVERNANCE FRAMEWORK (II/III): CORE PROCESS

Public Health (primary concerns)

What is so specific about nanotechnologies with respect to public health?

Nanocontainers – what can go wrong? Non-performance....

- Impacts occupational health & safety (in production)
- Impacts heath & safety of the intermediate/end user
- Impacts environment normal use
- Impacts environment abnormal use
- Impact "low-dose-longexposure" scenarios
- Impact security

* - Calculated and/or perceived by the society

(integrated) Risk assessment and management should:

- combine quantitative and qualitative assessment
- deal with low-quality, scattered, inconsistent and few data
- match the model-based and behavior-based assessment be seamlessly combined with the preliminary screening analysis
- provide a preliminary assessment of risks and effects of low-doses long exposure effects in the (usually!) short times available in research projects

KISK Medium Low CONSEQUENCES: Environment, Health, Safety, Economic ...

methods & tools

- * Calculated and/or perceived by the society
- IT infrastructures (databases, communication possibilities ...)
- simulation
- bio-inspired modeling (e.g. artificial organs, artificial life)

INTeg-Risk

- advanced methodologies
- data mining

 \succ

. . .

- complex systems
- risk assessment methods & tools

needed: INTEGRATED RISK MANAGEMENT (Over the life-cycle)!

... health ... general:

- Health effect are:
 - not only "depositions" and "concentrations", but more
 - how the people feel ("thick" or "well"!)
 - ... if exposed to nanoparticles, nanomaterials, nanotechnologies ...
- ...and for industry and industrial safety it means the exposure of:
 - work force
 - users of their products
 - general population

Nanocontainers – what can go wrong? Non-performance....

- Non-performance: material properties
 - The properties are not as expected/foreseen globally, locally, in time
- Non-performance: as part of the structure
 - difficult or impossible to inspect, monitor, maintain
- Non-performance: failure modes
 - Different/unforeseen failure modes … ?
- Safety / Health/ Economic / business risk of failure or non-performance?

Example of Risk-analysis

Example of Risk-analysis

Example of Risk-analysis

Severity/Consequences	RN	Likelihood	RN	Probability for detection	RN
None – there are no consequences known or possible upon		None – the event cannot occur under no		Obvious - Failure which always is noted.	
event occurrence	0-1	circumstances	0-1	Probability for detection > 99.99%	0-1
Low - the event can lead to short delays or small technical					
drawbacks that can be very fast mitigated; very small amount of		Low – the event can occur only in very		Very good detectable - Normal probability for	
additional resources needed.	2-3	exceptional circumstances	2-3	detection 99.7%	2-3
Medium – the event leads to the medium (couple of days to					
couple of weeks) delays or technical drawbacks that can be					
mitigated in the relatively short time; some amount of additional		Medium - the event can occur and the cases of		Good Detectable - Certain probability for	
resources needed.	4-5	occurrence are known	4-5	detection >95%	4-5
		Medium-high – the event can occur and the			
Medium-high – the event leads to the serious (up to 2 months)		cases of occurrence have already been			
delays or technical drawbacks that require significant amount of		experienced by the risk assessors, it is common			
work to be overcome; additional resources are needed.	6-7	occurrence in the field of appraisal	6-7	Detectable - Probability for detection >50%	6-7
		High – the event occurrence in the particular			
High – the event leads to the serious (up to 6 months) delays or		case is probable; the risk assessor identifies			
technical drawbacks that require high amount of work to be		the elements/indicators that might lead to the		Difficulty to Detect - Probability for detection <	
overcome; significant additional resources are needed.	8-9	occurrence	8-9	50%	8-9
Very high - the event might lead to total failure of the project or		Very high – the event occurrence in the			
technical solution, technical drawback or additional work to		particular case is very probable; the risk			
overcome the problem is measured in years; doubling or more of		assessor identifies most of the		Not detectable - Failures will not be found -	
the resources is needed.	10	elements/indicators that lead to the occurrence	10	cannot be tested or not feasible	10

Example of Risk matrix CEN CWA 15740:2008

	Very probable	< 1 year	>1×10 ⁻¹	5						Very high risk
scales	Probable	1-5 years	1×10^{-1} to 1×10^{-2}	4	ory				High risk	
es of PoF	Possible	5-10 years	1×10 ⁻² to 1×10 ⁻³	3	catego			Medium risk		
Exampl	Unlikely	10-50 years	1×10 ⁻³ to 1×10 ⁻⁴	2	PoF		Low risk			
	Very unlikely	>100 years	<1×10 ⁻⁴	1		(Very Low, negligible risk)				
	ë I.	4	4					CoF category		
	sc	8	Po					·····9-··9		
	Desc ptiv	MTB	Po			A	В	C	D	E
	Desc pth	gLW He	ିକ alth (Long te	erm visi	ibility)	A Warning issued No effect	B Warning issued Possible impact	C Temporary health problems, curable	D Limited impact on public health, threat of chronical illness	E Serious impact on public health, life threatening illness
	Desc ptů	BLW He	alth (Long te Safety (Inst	erm visi ant visi	ibility) ibility)	A Warning issued No effect No aid needed Work disruption	B Warning issued Possible impact First aid needed No work disability	C Temporary health problems, curable Temporary work disability	D Limited impact on public health, threat of chronical illness Permanent work disability	E Serious impact on public health, life threatening illness Fatality(ies)
	Desc pth	ATM He	alth (Long te Safety (Inst	erm visi ant visi Enviroi	ibility) ibility) nment	A Warning issued No effect No aid needed Work disruption Negligible impact	B Warning issued Possible impact First aid needed No work disability Impact (e.g. spill) contained	C Temporary health problems, curable Temporary work disability Minor impact (e.g. spill)	D Limited impact on public health, threat of chronical illness Permanent work disability On-site damage	E Serious impact on public health, life threatening illness Fatality(ies) Off-site damage Long term effect
	Desc ptů	BLW He	alth (Long te Safety (Inst	rm visi ant visi Enviroi Busine	ibility) ibility) nment ess (€)	A Warning issued No effect No aid needed Work disruption Negligible impact <10k€	B Warning issued Possible impact First aid needed No work disability Impact (e.g. spill) contained 10-100 k€	C Temporary health problems, curable Temporary work disability Minor impact (e.g. spill) 0.1-1 M€	D Limited impact on public health, threat of chronical illness Permanent work disability On-site damage 1-10 M€	E Serious impact on public health, life threatening illness Fatality(ies) Off-site damage Long term effect >10 M€
	Desc pth	ALW He	alth (Long te Safety (Inst	erm visi ant visi Enviroi Busind Se	ibility) ibility) nment ess (E) ecurity	A Warning issued No effect No aid needed Work disruption Negligible impact <10k€	B Warning issued Possible impact First aid needed No work disability Impact (e.g. spill) contained 10-100 k€ On-site (Local)	C Temporary health problems, curable Temporary work disability Minor impact (e.g. spill) 0.1-1 M€ On-site (General)	D Limited impact on public health, threat of chronical illness Permanent work disability On-site damage 1-10 M€ Off site	E Serious impact on public health, life threatening illness Fatality(ies) Off-site damage Long term effect >10 M€ Society threat
	Desc pth	ALW He	alth (Long te Safety (Inst	erm visi ant visi Enviror Busino Se Imago	ibility) ibility) nment ess (€) ecurity e Loss	A Warning issued No effect No aid needed Work disruption Negligible impact <10k€	B Warning issued Possible impact First aid needed No work disability Impact (e.g. spill) contained 10-100 k€ On-site (Local) Minor	C Temporary health problems, curable Temporary work disability Minor impact (e.g. spill) 0.1-1 M€ On-site (General) Bad publicity	D Limited impact on public health, threat of chronical illness Permanent work disability On-site damage 1-10 M€ Off site Company issue	E Serious impact on public health, life threatening illness Fatality(ies) Off-site damage Long term effect >10 M€ Society threat Political issue
	Desc ptů	BLW He	alth (Long te Safety (Inst J Publ	erm visi ant visi Enviroi Busino Se Imago lic disri	ibility) ibility) nment ess (€) ecurity e Loss uption	A Warning issued No effect No aid needed Work disruption Negligible impact <10k€	B Warning issued Possible impact First aid needed No work disability Impact (e.g. spill) contained 10-100 k€ On-site (Local) Minor Negligible	C Temporary health problems, curable Temporary work disability Minor impact (e.g. spill) 0.1-1 M€ On-site (General) Bad publicity Minor	D Limited impact on public health, threat of chronical illness Permanent work disability On-site damage 1-10 M€ Off site Company issue Small community	ESerious impact on public health, life threatening illnessFatality(ies)Off-site damage Long term effect>10 M€Society threatPolitical issueLarge community

Example of one item risk assessment

15	Detection	detection? laser scatter?	Medium high	Low	Low	1		×
	Weighted Average	Weighted Average of ALL Risks	Medium	High	Medium			

Insert New...

Risk Matrix

	5					
L	4			2. Agglomeration of the nanocontainers		
K E L	3	15. Detection	 Non-opening of the container Not enough agent in the container 	14. Powder & Suspensions		
H 0 0	2	 4. Too fast release of the agent 5. Too slow release of the agent 			11. Quantities / use Weighted Average	10. Registration (REACH) 13. Safety
	1				6. The agent does not perform 8. Scale effects	 7. The agent has an opposite effect 9. Basic properties change 12. Toxicity problems
		A	В	с	D	E
			C () N S E Q U E N C	ES	

Basic DPD simulation concept for self-healing process

DPD simulation for one microcapsule

DPD simulation for more nanocontainers: "Scenarios"

User friendly software for DPD simulation of nanocoating with nanocontainers

articlettle	thads - DPD Coating						-
mpley (196							
						1-2-2-212-212-2512-212-212-212-2	
	95819 1933					115969696998692139689898168 648889788788998848888888 698897889798979884888888	
						<u></u>	
	21212						
	4444						
	1111					**************************************	
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1111						
	1111					#18###18###18##618###7###827# 	
	111	a and a second second second					
	1.11						
	<u></u>		B 17 12 24 17	281 285 235 11 23 1			
	1111						
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	1111						
		282 282 282 282 282			13.6.9.8.8		
	1120						
	*****	***************	*******************	*********************		*********************	
1.1.1			a Yana sa sa sa		ere e constru		
bT:	0.002	Gamma:	4.5	Rep. Force coefficient:	25	Rep. force coeff. 2:	500
force:	0.02	Step average:	100	Total steps:	5000	Number of nanocontainers:	5
sion U:	120	Division/V)	80	Include random force:		Nanocontainer radius:	5
	Calculation	Show velocity plot	Show graph table	Runy	2 op animation	Nanocantaiter thickness:	2

Basic parameters in DPD equations and main software dialog

•						
DeltaT: 0.002	Gamma:	4.5	Rep. force coefficient:	25	Rep. force coeff. 2:	500
Ext. force: 0.02	Step average:	100	Total steps:	1000	Membrane small radius:	5.0
Division U: 120	DivisionV:	80	Include random force:		Membrane thickness:	2.0
Calculation	Show velocity plot	Show graph table	Run/Stop	animation		

Rep. force coefficient $2 - a_{ii}$ repulsive coefficient for healing agent particles

Basic DPD equation

$$\mathbf{F}_{i} = \sum_{j \neq i} \left(\mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R} \left(\Delta t \right)^{-1/2} \right) + \mathbf{F}^{ext}$$

DeltaT = Δt

Division V – initial Ext.force = F^{ext}

$$\mathbf{F}_{ij}^{C} = a_{ij} (1 - r_{ij} / r_{c}) \mathbf{r}_{ij}^{0}$$
$$\mathbf{F}_{ij}^{D} = -\gamma w_{D} (\mathbf{v}_{ij} \cdot \mathbf{e}_{ij}) \mathbf{r}_{ij}^{0}$$
$$\mathbf{F}_{ii}^{R} = \boldsymbol{\sigma} w_{R} \boldsymbol{\xi}_{ii} \mathbf{r}_{ii}^{0}$$

F^C - conservative force

- F^D conservative force
- F^R random force

Gamma – γ viscosity coefficient for dissipative force iNTeg-Risk

Thank you very much!

Discrete particle models of matrix with microcapsules

- Smoothed Particle Hydrodynamics (SPH)
- Discrete Particle Dynamics DPD
- Molecular Dynamics (MD)
- Multiscale modeling (bringing scale method)

DPD Method – Theoretical background

$$m_i \dot{\mathbf{v}}_i = \sum_j (\mathbf{F}_{ij}^C + \mathbf{F}_{ij}^D + \mathbf{F}_{ij}^R) + \mathbf{F}_i^{ext}$$

$$\mathbf{F}_{ij} = \mathbf{F}_{ij}^C + \mathbf{F}_{ij}^D + \mathbf{F}_{ij}^R$$

Basic DPD equations

$$\mathbf{F}_{ij}^{C} = a_{ij} (1 - r_{ij} / r_{c}) \mathbf{r}_{ij}^{0}$$
$$\mathbf{F}_{ij}^{D} = -\gamma w_{D} (\mathbf{v}_{ij} \cdot \mathbf{e}_{ij}) \mathbf{r}_{ij}^{0}$$
$$\mathbf{F}_{ij}^{R} = \boldsymbol{\sigma} w_{R} \boldsymbol{\xi}_{ij} \mathbf{r}_{ij}^{0}$$

 a_{ii} is the maximum repulsion force per unit mass

- r_{ij} is the distance between particles *i* and *j*, is the unit vector pointing in direction from *j* to *i*,
- γ is the friction coefficient
- σ is the amplitude of the random force.

 w_D and w_R are the weight functions for dissipative and random forces

iNTeg-Risk

Additional conditions for DPD equations

DPD fluid system possess a Gibbs–Boltzmann equilibrium state, the following relation between the amplitudes of the weight functions of dissipative and random forces, and , must hold (Español 1995):

$$w_D = w_R^2$$

Also the amplitude of the random force σ is related to the absolute temperature *T*,

$$\boldsymbol{\sigma} = \left(2k_{B}T\gamma\right)^{1/2}$$

where is the Boltzmann constant. The weight functions can be expressed in a form (Groot and Warren 1997) given as

$$w_D = (1 - r_{ij} / r_c)^2$$
 $w_R = 1 - r_{ij} / r_c$

Multiscale Modeling FE + DPD

Division of the flow domain into:

- a) GLOBAL DOMAIN Domain modeled by a continuum model (Finite Element) only
- b) LOCAL DOMAIN Domain modeled by both discrete particles (DPD) and FE

Periodic boundary conditions – keep the number of particles constant within the local domain

Coupling the DPD and FE models

1) Decomposition of particle velocities

2) FE nodal forces in terms of the particle interaction forces

MESOSCOPIC BRIDGING SCALE METHOD

Mathematical interpretation of the coupling between discrete particle (DPD) and finite element (FE) models

Example 1: 2D Poiseuille fluid flow between two parallel plates

2D POISEUILLE FLOW

Example 2: 2D flow inside a cavity

,			-	_	_																14			10		
ļ	l	1	~	-	-	-	-	•	<u>.</u>	-	•	÷	•	•	•	<u>.</u>			-	~					j,	
	}	÷.	Ľ.	7	7	,	2	-	_	_			_	-	-	-			1	Ň						
li	ł	ł	ť	Ń	Ŷ.	ş,	ı.	÷.		-	-	•	•	•	•	٠	٠	,	1	1	ļ.					
4	ţ	Ń	Ň	١	Ν	N	Y	r	ì	`	č	-	-	1	2	2	1	1	2	',			Č,		g	272
4	1	4	`	2	2	:	2	2	2	2	2	-	2	-	2	2	2	,	2	1	1	1	1	1	i	i
, i	÷	ì	2	2	~	ς.	~	~	~	~	~		-		-	~	^	~	1	1	1	1	1	1	ł	1
۰	١	ł	١	N	1	`	`	`	`	~	~	-	-		1	2	1	1	1	1	1	4	-	5	1	:
	1	1	Ň	~	2	2	2	2	0	2	2	_	_		_	~	2	2	2	,	7	2	7	÷	;	;
	\$	ŝ	Ň	÷	ŝ	1	ς,	~	~	~	~-	-	-			-	-	1	1	/	1	/	1	7	۲	•
1	•	1	۰.	Ň	Ň	`	`	~	•	\sim	~	-	-	-	-	1	1	1	1	1	1	1	1	1	1	•
			ì		Ì	Ì	Ĵ	2		2	-	_	_	-	2	2	2	2	2	ĵ,	,	2	÷	;	÷	:
	•	•	•	•	•	•	•	•	•	•	-	-	-	-	-	-	1	1	1	1	1	•	•	'	ľ	·
Ċ	1	÷	2	1		1	:	:	:	-	-	_	_	ī	ĺ	ĺ	ĺ	1	Ĵ	ί.	ĺ	1	÷	÷	Ċ	:
	÷									-	-	_	_	2	-	-				,	÷,	÷.	,			
			,	,	,	,	•	-	-	-	-	-	-	-	-					1	1			·	•	•
Ċ	•	÷			:	:	:	:	-	-	-		Ĵ	1	:	÷	;	:	ĵ	Ĵ	Ĵ	Ĵ	:	÷	÷	:
		÷	÷											-			-	-							÷	
•	•	·	·	·	•	`	•	`	·	•	•	·	·	•	•	-			·	•	-	-	·	·	·	•
		÷	÷	÷	ļ,	ļ,	Ì	į	Ż	į	į	Ĵ	Ĵ		:	:	Ì		:	:		:	:	÷	·	

Prescribed velocity for a driven cavity problem

Driven cavity problem: Results

DPD application in platelet adhesion and aggregation modeling

Schematic representation of the mechanisms of platelet adhesion and aggregation in flowing blood

Additional forces in platelet aggregation and adhesion

Schematics of platelet aggregation and adhesion. Activated platelets in the vicinity of a injured wall epithelium and binding of platelets at the walls using springs. Interaction forces for two aggregated platelets .The domain of the interaction between platelets is denoted by r_{max} . (Filipovic et al. 2007) integ-Risk

Table of DPD parameters for thrombosismodeling

Name of DPD parameter	What is used for platelet aggregation	Reference
Conservative force parameter	a _{ij} = 25	Groot, R.D., Warren, P.B., 1997. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423-4435.
Friction coefficient	γ = 4.5	Groot, R.D., Warren, P.B., 1997. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423-4435.
Spring constant for platelet binding	k _{bw} = 50 N/m	Filipovic, N., Ravnic, D.J. Kojic, M., Mentzer, S.J., Haber, S. Tsuda, A., Interactions of Blood Cell Constituents: Experimental investigation and Computational Modeling by Discrete Particle Dynamics Algorithm, <i>Microvascular</i> <i>Research</i> , 75, 279-284, 2008.

Table of DPD parameters for thrombosis modeling

Relation between the weight functions of dissipative and random forces	$w_D = w_R^2$	Groot, R.D., Warren, P.B., 1997. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423-4435.
Boltzmann constant	<i>k_B</i> = 1.3806504×10 ^{−23} J/K	
Weight function of dissipative force	$w_D = (1 - r_{ij} / r_c)^2$	
Weight function of random force	$w_R = 1 - r_{ij} / r_c$	
Random number with zero mean and unit variance	ξ _{ij}	The Random Number Generator which I used is based on the algorithm in a FORTRAN version published by George Marsaglia and Arif Zaman, Florida State University; At the fhw (Fachhochschule Wiesbaden, W.Germany), Dept. of Computer Science, This random number generator originally appeared in "Toward a Universal Random Number Generator" by George Marsaglia and Arif Zaman. Florida State University Report: FSU-SCRI-87-50 (1987) It was later modified by F. James and published in "A Review of Pseudo-random Number Generators" THIS ALGORITHM IS PUBLISHED IN TRANSACTIONS ON MATHEMATICAL SOFTWARE, VOL. 18, NO. 4, DECEMBER, 1992, PP. 434-435.

Platelet aggregation in blood flow between two parallel plates

Filipovic, N., Ravnic, D.J. Kojic, M., Mentzer, S.J., Haber, S. Tsuda, A., Interactions of Blood Cell Constituents: Experimental investigation and Computational Modeling by Discrete Particle Dynamics Algorithm, *Microvascular Research*, 75, 279-284, 2008.

Filipovic, N., Haber, S., Kojic, M., Tsuda, A., Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: II. Lateral dissipative and random forces, *J. Phys. D: Appl. Phys.* 41 035504, 2008

DPD simulation of Karino's example blood flow through expanded tube

- T. Karino, H.L. Goldsmith, Adhesion of human platelets to collagen on the walls distal to a tubular expansion, Microvascular Research 17, 238-269, 1977.
- Filipovic, N., Kojic, M., Tsuda, A., Modeling thrombosis using dissipative particle dynamics method, Phil Trans Royal, A 366(1879), 2008

Deposition of platelets, computer simulations

Basic DPD simulation concept for self-healing process

DPD simulation for one microcapsule

DPD simulation for more nanocontainers: "Scenarios"

User friendly software for DPD simulation of nanocoating with nanocontainers

articlettle	thads - DPD Coating						-
mpley (196							
						1-2-2-212-212-2512-212-212-212-2	
	95819 1933					115969696998692139689898168 648889788788998848888888 698897889798979884888888	
						<u></u>	
	21212						
	4444						
	1111					**************************************	
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1111						
	1111					#18###18###18##618###7###827# 	
	111	a and a second second second					
	1.11						
	<u></u>		B 17 12 24 17	281 285 235 11 23 1			
	1111						
		****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	1111					Tyler The 174 55 145 175 575 575 575 575 575 575 575 575 57	
		282 282 282 282 282			13.6.9.8.8		
	1120						
	*****	***************	********************	*********************		*********************	
1.1.1			a Yana sa sa sa		ere e constru		
bT:	0.002	Gamma:	4.5	Rep. Force coefficient:	25	Rep. force coeff. 2:	500
force:	0.02	Step average:	100	Total steps:	5000	Number of nanocontainers:	5
sion U:	120	Division/V)	80	Include random force:		Nanocontainer radius:	5
	Calculation	Show velocity plot	Show graph table	Runy	2 op animation	Nanocantaiter thickness:	2

### Basic parameters in DPD equations and main software dialog

•						
DeltaT: 0.002	Gamma:	4.5	Rep. force coefficient:	25	Rep. force coeff. 2:	500
Ext. force: 0.02	Step average:	100	Total steps:	1000	Membrane small radius:	5.0
Division U: 120	DivisionV:	80	Include random force:		Membrane thickness:	2.0
Calculation	Show velocity plot	Show graph table	Run/Stop	animation		

#### Rep. force coefficient $2 - a_{ii}$ repulsive coefficient for healing agent particles



#### **Basic DPD equation**

$$\mathbf{F}_{i} = \sum_{j \neq i} \left( \mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R} \left( \Delta t \right)^{-1/2} \right) + \mathbf{F}^{ext}$$

DeltaT =  $\Delta t$ 

Division V – initial Ext.force = F^{ext}

$$\mathbf{F}_{ij}^{C} = a_{ij} (1 - r_{ij} / r_{c}) \mathbf{r}_{ij}^{0}$$
$$\mathbf{F}_{ij}^{D} = -\gamma w_{D} (\mathbf{v}_{ij} \cdot \mathbf{e}_{ij}) \mathbf{r}_{ij}^{0}$$
$$\mathbf{F}_{ii}^{R} = \boldsymbol{\sigma} w_{R} \boldsymbol{\xi}_{ii} \mathbf{r}_{ii}^{0}$$

F^C - conservative force

- F^D conservative force
- F^R random force

Gamma –  $\gamma$  viscosity coefficient for dissipative force iNTeg-Risk





# Alternative and comparison: MD method for nanocomposite coating for healing surface defects

- •Thin film of polimers and nanoparticles
- •Polimers are modeled as bead-spring chains

•Each chain is composed of 50 Lennard-Jones (LJ) spheres that are connected by anharmonic springs

$$U_{LJ}(r) = \begin{cases} 4\varepsilon_{ij} \left[ \left( \frac{\sigma_m}{r} \right)^{12} - \left( \frac{\sigma_m}{r} \right)^6 - \left( \frac{\sigma_m}{r_c} \right)^{12} + \left( \frac{\sigma_m}{r_c} \right)^6 \right] & r \le r_c \\ 0 & r > r_c \end{cases}$$

$$\sigma_m = (\sigma_i + \sigma_j)/2$$
  $r_c = 2^{1/6}\sigma_m$ 

where  $\sigma_m$  is the characteristics interaction energy between spheres *i* and *j*,  $r_c$  is cut off radius



Geometry of the system used in the molecular dynamics (MD) simulations.

- (a) full simulation box
- (b) view from a different angle



Adjoining spheres along a chain interact through a finite extendable nonlinear elastic (FENE) potential given as

 $U_{FENE}(r) = \begin{cases} -0.5\kappa R_0^2 \ln\left[1 - \left(\frac{r}{R_0}\right)^2\right] & r < R_0 \\ \infty & r \ge R_0 \end{cases}$ 

$$\kappa = 30\varepsilon/\sigma^2$$
  $R_0 = 1.5\sigma$   $T^* = kT/\varepsilon$ 

where  $\kappa$  is spring constant,  $R_{\theta}$  is radius,  $T^*$  is constant temperature maintained by a Brownian thermostat

Nanoparticles are added to the system at random positions, resulting in a configuration where monomers and nanoparticles overlap. This overlaping is define as

$$U_{soft}(r) = \begin{cases} A \left[ 1 + \cos\left(\frac{\pi r}{r_c}\right) \right] & r \le r_c \\ 0 & r > r_c \end{cases}$$



Average volume fraction of particles inside the notch (notch/uniform) as a function of particle size for two different notch sizes. [*Tyagi et al, Macromolecules 37, 9160-9168, 2004*]



#### References

- 1. Filipovic, N., Ravnic, D., Kojic, D., Mentzer, S.J. Haber, S. Tsuda, A. Platelet adhesion to a collagen wall: Experimental investigation and computer modeling by Dissipative Particle Dynamics Method, *Microvascular Research*, 75, 279-284, 2008.
- 2. Haber, S., Filipovic, N., Kojic, M. and Tsuda, A., Dissipative Particle Dynamics Simulation of flow generated by two rotating concentric cylinders. Part I: Boundary conditions. *Phys. Rev. E.* 74, 1-8, 2006.
- 3. Jovanovic A.S., and Filipovic, N., Innovative Modeling Methods in Damage Assessment: Application of Dissipative Particle Dynamics to Simulation of Damage and Self-Healing of Polymer-Coated Surfaces, *Journal of Theoretical and Applied Mechanics (Poland)*, 44, 3, 637-648, 2006.
- 4. Jovanovic, S., Filipovic, N., The Roadmapping of the EU Materials Research (EuMaT) and an Alternative Modeling Concepts and Dissipative Particle Dynamics Method for Simulation of Particle Adsorption onto a Polymer-coated Surface.*SEECCM06*: 57-63, Kragujevac, 2006.
- 5. Kojic, M, Bathe, K. J., Inelastic Analysis of Solids and Structures, Springer, Berlin-Heidelberg, 2005.
- 6. Kojic, M., Filipovic, N., Stojanovic, B., Kojic, N., Computer Modeling in Bioengineering Theoretical Background, Examples and Software, J. Wiley and Sons, England, 2008.
- 7. Filipovic, N., Haber, S., Kojic, M., Tsuda, A., Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: II. Lateral dissipative and random forces, *J. Phys. D: Appl. Phys.* 41 035504 (6pp) doi:10.1088/0022-3727/41/3/035504, 2008.
- 8. Kojic, M., Filipovic, N., Tsuda, A., A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method, *Comput. Methods Appl. Mech. Engrg.* 197, 821–833, 2008.
- 9. Lee, J. Y., et al., J. Chem. Phys. 121, 5531, 2004.
- 10. Tyagi, S., et al., Macromolecules, 37, 9160, 2004.
- 11. Smith, K. A., et al., Macromolecules, 38, 10138, 2005.

