

Emerging risks in public perception: Will we face an acceptance crisis?

Ortwin Renn

University of Stuttgart and DIALOGIK

Stuttgart, June, 2, 2009

Risk Perception

What Do We Know?

Janus face – roman god of ambivalence/ambiguity

Principles of Risk Perception

- Human behavior depends on perceptions, not on facts
- Perceptions are a well-studied subject of social science research: they differ from expert assessments, but they follow consistent patterns and rationales
- There are four genuine strategies to cope with threats: fight, flight, playing dead, experimentation

Qualitative Risk Characteristics

- with respect to the nature of risk:
 - dread
 - familiarity
 - personal experience (perceptible by human senses)
 - natural versus artificial risk source
- with respect to the risk situation:
 - voluntariness
 - controllability
 - fair distribution of risks and benefits
 - confidence in risk management

Qualitative Benefit Characteristics

- with respect to the nature of the benefit:
 - Commonly agreed social need such as competitiveness or quality of life
 - Familiarity (comprehensibility)
 - Personal experience (control over benefits)
- with respect to the social situation:
 - Embedding in positive social context
 - Compatibility with one's own lifestyle
 - Fair distribution of risks and benefits
 - Confidence in the innovation network

Dominant Risk Perception Clusters

- *Emerging danger:* randomness as threat
- Creeping danger: confidence or zero-risk
- Surpressed danger: myth of cycles
- Weighing risks: only with betting
- Desired risks: personal challenge

Application to Emerging Technology

Public perception: Representative of Cluster: "Pending Danger"

- Key characteristics
 - Low-probability, high-consequence risk
 - Sophisticated technology with little long-term familiarity
 - Little time for warning and emergency measures
- High sensibility for indicators of human failures or organizational problems (high reliability)
- Concern about randomness of catastrophic event
- Risk aversion most frequent response

Application to Emerging Technology

- Public perception: Representative of Cluster: "Creeping danger"
 - Concern about long-term impacts (risks and benefits)
 - Key variable trust:
 - If yes: risk-benefit balancing
 - If no: request for zero risk regardless of benefit
 - If maybe: orientation on external criteria
 - High sensibility for symbolic aspects of technology (risks and benefits)

Integrative Approach(Rohrmann/Renn)

iNTeg-Risk

Risk Perception

Empirical Results

Janus face – roman god of ambivalence/ambiguity

Empirical Results

- with respect to causal factors
 - Psychometric factors such as personal control, dread or familiarity (highly influential)
 - Personal value orientation (selectively important)
 - Materialistic
 - Hedonistic
 - Work Ethics
 - Post-materialistic
 - Trust in institutions (creeping danger: high)
 - Stigma Effects (selected risks but then very powerful)
 - Socio-demographic variables (minor effect)

Empirical Results

- with respect to countries I
 - Trust:
 - Europe:: low regulation, high in science, high in NGOs
 - US: medium regulation, split in science, polarized in NGOs
 - Japan: normally high in regulation, high in science, medium to low in NGOs
 - Psychometric attributes
 - Europe: -- artificiality -- no personal control -dread,
 - USA:: --familiarity, --dread, --unfair
 - Japan: --artificiality -- no institutional control, -foreign

Empirical Results

- with respect to countries II
 - Concerns:
 - Europe: nuclear energy, GMOs, chemical facilities
 - US: nuclear energy, centralized IT
 - Japan: GMOs, food techology, nuclear energy
 - Stigma effects
 - Europe: BSE, nuclear waste, GM food
 - USA: Nuclear waste,
 - Japan: BSE, air pollution,

Implications for Risk Management and Communication

• For communication

- Provide the *right* audience with the *right* information through the *right* source and channel
- Provide proactive communication about all issues that matter to people and their risk-benefit perception

• For management

- Design technologies in a way that they reduce the potential for fear and increase the confidence in the potential benefit for society and consumers
- Incorporate the views and opinions of all stakeholders in the process of risk analysis and governance

Summary

- People behave according to perceptions not facts
- Perceptions follow consistent patterns, but their expression may vary from culture to culture
- Perceptions are governed by qualitative characteristics, semantic patterns, trust, and value orientations
- Of special importance are pending risks and emerging risks in the perception of new technologies
- Emerging risks are of high concern in Europe, medium in Japan and low to medium in the USA

Not to forget:

Risk managers cannot produce certainty but can help people to develop coping mechanisms to deal prudently with the necessary uncertainty that is required for societies to progress

