

iNTeg-Risk: Early Recognition, Monitoring and Integrated Management of Emerging, New Technology Related Risks

iNTeg-Risk Kick-off Meetin Emerging Risks and HSE

Laurence Cusco Mike Wardman

Health and Safet Laboratory, HSL

Occupational & Environmental Health

Risk Assessment

Work Environment

Engineering

Field Scientific Support

Fire, Explosions & Process Safety

Behavioural & Social Sciences

Specialist Photographic & Graphics Services

- UK Regulators
 - Health and Safety Executive: Risk assessment, technical risk reduction, guidance, inspection, ATEX, Pressure Equipment Directive, ...
 - Environment Agency and Scottish Environmental Protection Agency: Environmental impact assessment, Integrated pollution prevention and control
 - □ Local Authorities: Planning permission
- Other Government departments and responsibilities
 - □ Trade
 - □ Industry
 - **Employment**
 - □ Finance

Safety risk and health risk are different

- □ Safety risk is based on events
- □ Health risk is based on exposure (concentration and time)

Risk assessment should take account of both:

- □ Severity / consequence
- Probability / likelihood / frequency

FUNDAMENTAL QUESTIONS

1. What? Hazard identification

> 2. How bad? Severity

3. How often? Frequency

4. So what? Risk Assessment

- Team-based
- Suggestions from outside the immediate design team
- Brainstorming
- Needs structured approach:
- Hazard and Operability Study (HAZOP),
- Failure Mode Effect Analysis (FMEA),
- 'What if' studies
- Top down from final consequences
- Bottom up from initial causes

Originally developed by UK Chemical Industry:

- 1. Inherent safety of concept design
- 2. Top down study using keywords at design flowsheet stage
- 3. HAZOP of piping and instrumentation diagram
- 4. Check actions complete before commissioning
- 5. Inspect plant before commissioning
- 6. Follow up when plant operating
- (7. Decommissioning)

Operational risk management

RISK ASSESSMENT

Frequency	Severity				
per year	Α	В	С	D	E (highest)
I (highest)					
П					
ш					
IV					
V (lowest)					

TOLERABILITY OF RISK

- 'Reducing Risks Protecting People': <u>http://www.hse.gov.uk/risk</u>
- Individual risk
 Member of the public
 Workers
- Societal risk
 - Aversion to certain types of event

- Approved codes of practice (ACOP)
- > Standards
 - CEN, CENELEC, ISO, IEC, national (e.g. BS)
- HSE Guidance
- Other government departments
- Trade associations
- Professional institutions

'Good practice' changes with time as knowledge about hazards improves or risk acceptability criteria develop

- 'Goal-setting' approach
- Between the intolerable and generally acceptable regions, need to demonstrate risks are as low as reasonably practicable (ALARP)
- ALARP concept is fundamental to the UK regulatory approach – has legal basis
- Balance weighted towards health and safety improvement in cost benefit analysis unless there is gross disproportion
- Environmental equivalent: best available technology not entailing excessive cost (BATNEEC)

RISK REDUCTION MEASURES

Examples:

- Laboratory characterisation of explosion characteristics
- Install explosion vents
- Ignition prevention
- Gas detectors
- Improve Safety Integrity Level of electronic control
- Automatic ESD
- Control room structure
- Remote operation
- Higher specification local extract ventilation & filters
- More maintenance effort
- Training of operators

- Science and technology
- The workplace and working practices
- Socio-economic trends that affect the labour market
- Trends in public attitudes towards risk
- The national political agenda
- The European Union
- International developments (globalisation)

- CO2 Capture & Storage
- Complex Working Practices
- Cyber Security
- Demographics
- Flexible Working Patterns
- Future of Keyboards
- Gene Therapy
- Human Performance Enhancement
- Hydrogen Economy

- Nanotechnology
- New & Emerging Pests
- Obesity
- Pervasive Computing
- Rapid Manufacturing
- Recycling
- Robotics
- Solvents Directive
- Sustainability
- TeraHertz Technology

HEALTH & SAFETY CARBON CAPTURE & STORAGE

> Capture

Pipeline

Storage

- Combustion or Fuel Cells
- Vehicular and Stationary Applications (CHP)
- \rightarrow H₂ Generation
- Storage (High Pressure, Adsorption)
- Distribution
- Public Perception

- How should the regulator take into account new and emerging risks
 - General methodologies and tools
 - Specifics for key areas
- Need to avoid nasty surprises

